skip to main content


Search for: All records

Creators/Authors contains: "Yan, Zhennan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.

     
    more » « less
  2. Abstract

    Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However, key driver genetic mutations related to targeted therapies are identified by genomic analysis like high-throughput molecular profiling. In this study, we develop a deep-learning model to predict the genetic mutations and biological pathway activities directly from WSIs. Our study offers unique insights into WSI visual interactions between mutation and its related pathway, enabling a head-to-head comparison to reinforce our major findings. Using the histopathology images from the Genomic Data Commons Database, our model can predict the point mutations of six important genes (AUC 0.68–0.85) and copy number alteration of another six genes (AUC 0.69–0.79). Additionally, the trained models can predict the activities of three out of ten canonical pathways (AUC 0.65–0.79). Next, we visualized the weight maps of tumor tiles in WSI to understand the decision-making process of deep-learning models via a self-attention mechanism. We further validated our models on liver and lung cancers that are related to metastatic breast cancer. Our results provide insights into the association between pathological image features, molecular outcomes, and targeted therapies for breast cancer patients.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)